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ABSTRACT: 
 
It is well known that vanishing point based analysis requires images with strong perspective effects due to wide angle lenses, close 
objects, and often oblique viewing angles. Aerial imagery, however, normally present weak perspective effects because of long-
range shootings. In this paper, we present a model-based method for reconstructing rectilinear buildings from single images. The 
recovery algorithm is formulated in terms of two objective functions which are based on the equivalence between the vector normal 
to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. These 
objective functions are minimized with respect to the camera pose, the building dimensions, locations and orientations to obtain 
estimates for the structure of the scene. The comparison with the vanishing points based method indicates that our method is 
significantly superior over the vanishing points based method. The effectiveness of this approach is also demonstrated quantitatively 
through simulations and actual images.  
 
 

1. INTRODUCTION 

1.1 Background 

3D object reconstruction from images is a common problem in 
computer vision and photogrammetry. In the case of only one 
image available, 3D reconstruction from single images has to be 
performed. The existing single view reconstruction methods 
may be roughly divided into two broad categories: geometry 
constraints based and model based. Here we do not include non-
metric single view reconstruction methods (e.g. Hoiem et al., 
2005) in these two categories. The geometry constraint based 
methods (e.g. Leibowitz et al., 1999) use the geometry inherent 
in the images (i.e. vanishing points) to derive the camera 
calibration information and result in a 3D reconstruction; while 
most model-based methods (e.g. Debevec et al, 1996) recover 
model parameters through a model-to-image fitting algorithm 
which involves a minimization of total disparity errors between 
observed edges and projections of the reconstructed lines.    
 
Vanishing points are defined as points at which the extensions 
of parallel lines appear to converge in the perspective view of 
the image. The limitations of vanishing points based methods 
are obvious. As vanishing points are points in the image at 
infinity, slight inaccuracy in the measurements of lines will 
result in large errors in the positions of calculated vanishing 
points. Automatic methods improve the accuracy of vanishing 
detection but often require sufficient straight lines which are 
detectable in the images. In general, the images may, however, 
contain very few straight lines. Further, no existing edge 
detection algorithms can provide only useful edges reliably 
from images of a common scene; human intervention is always 
needed in those automatic methods. From a practical point of 
view, manual digitization of straight lines in the images is often 
involved. In this situation, the vanishing points based methods 
do not work well, in particular for those images with weak 
perspective effects (e.g. aerial images).    

 
In this paper, we present a model-based method to reconstruct 
rectilinear buildings up to a scale factor from single images. 
The difference from previous model-based methods is that our 
method does not require a model-to-image fitting algorithm, 
and therefore avoid a minimization procedure. The method is 
based on manual feature correspondence between pre-defined 
parameterized 3D model edges and corresponding image edges. 
The algorithm then automatically recovers camera pose and 
model dimensions.  
 
To our knowledge, the comparison between vanishing points 
based methods and model-based methods are rarely reported. In 
this paper, we also compared the performance of the vanishing 
points based method (Zhang et al. 2001) with our model-based 
method using identical synthetic and real data. The quantitative 
analysis results indicate that our method is significantly 
superior over the vanishing points based method in terms of 
feasibility for various images with strong or weak perspective 
effects.  
  
1.2 Related Work 

1.2.1 Vanishing Points Based Methods: The existing 
vanishing points detection methods may include manual 
detection, using Hough Transform (e.g. Tuytelaars 1997), 
searching over Gaussian sphere (e.g. van den Heuvel, 1998), 
and using projective geometry (e.g. Birchfield, 1998). Most of 
automatic vanishing points detection methods are not only 
computational intensive but also require human interaction, 
which are hard to reach operational level. Manual detection of 
vanishing points satisfies operational level but suffer problem 
that the determined vanishing points may not be accurate. There 
also exist a bunch of papers on vanishing points based 3D 
reconstruction (e.g. Guillou et al., 2000). Since our method is 
not in this route, we do not include a detailed review of the 
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methods here. Interest readers may refer the paper (Guillou et 
al., 2000) for more information. 
 
1.2.2 Model-Based Methods: We regard model-based methods 
(e.g. Debevec et al. 1996, Wang and Ferrie, 2008) as evolution 
from line-based methods (e.g. Liu et al. 1990, Kumar and 
Hanson 1994). The model-based methods use structure 
information inherent in the objects which is ignored in the line-
based approaches. Early attempt (Liu et al. 1990) solved for the 
camera rotation first and then the camera translation using both 
lines and points correspondence. They considered three camera 
rotation angles as obtained from a nominal orientation by small 
perturbations, e.g. 0 degrees. Based on this assumption, their 
algorithm only works if the three camera Euler rotation angles 
are less than 30 degrees. Kumar and Hanson (1994) solved for 
the rotation and translation simultaneously by adapting an 
iterative technique formulated by Horn (1990). They also 
reported that the initial rotation estimates for some data sets 
must be within 40 degrees for all the three Euler angles 
representing the rotation. When initial estimates for rotation and 
translation are not available, they sampled rotation space, and 
each of the samples was used as an initial estimate for the 
rotation estimation by a method akin to Liu et al. (1990). The 
estimated rotation and translation based on the rotation samples 
are then used as initial estimates for solving the camera rotation 
and translation simultaneously. Taylor and Kriegman (1995) 
estimated both the camera positions and the structure of the 
scene from multiple images. Based on a random initial estimate 
of rotation, the translation and model parameters are computed 
as initial inputs for the subsequent model-to-image fitting 
procedure. If the disparity between predicted edges and the 
observed edges is smaller than some preset threshold, the 
minimum is accepted as a feasible estimate. Debevec et al. 
(1996) argued that if the algorithm begins at a random location 
in the parameter space, it stands little chance of converging to 
correct solution. They developed a method to directly compute 
a good initial estimate for the camera positions and model 
parameters, and then use those estimates as initial inputs for the 
subsequent model-to-image fitting process.  
 
Our approach builds on this line of work. Described is a two-
step iterative scheme for recovering camera orientation that, 
unlike existing methods, does not require a good initial guess 
for the rotation. Instead, the good initial estimate for the 
rotation is computed directly by using coplanarity constraints. 
The camera translation and predefined model parameters are 
determined based on the calculated rotation through a linear 
least squares minimization. The 3D reconstruction of buildings 
is based on the recovered camera pose and the assumption of 
flat terrain. Unlike existing methods, our method does not 
require a model-to-image projection process, and is particularly 
suitable for oblique images with large shooting angles in urban 
environments.  
 
 

2. THE METHOD 

2.1 Notation 

Figure 1 shows how a straight line segment, model edge 67, in a 
cube model (building 1) projects onto the image plane of a 
camera. The coordinates of two endpoints of the projected 
image edge 67 in the camera coordinate system can be 
represented as {(x1, y1, -f), (x2, y2, -f)}. The camera position 
relative to the object coordinate system is represented in terms 
of a rotation matrix R and a translation vector t. The straight 

line 67 can be defined by a pair of vectors (v, u) in the object 
coordinate system where v represents the direction of the line 
and u represents a point on the line. m is normal vector of the 
projection plane defined by the two lines (C6, C7) and camera 
centre C in the camera coordinate system. The coplanar 
constraints derived in (Taylor and Kriegman, 1995) are outlined 
in the following. The fundamental relation of the imaging 
geometry can be represented by the equation (1), 
 
        ))(( tuvRm −×=                                                        (1) 

Equation (1) is based on the fact that the 3D model lines (e.g. 
line 67) in the camera coordinate system must lie on the 
projection plane formed by lines (C6, C7) and camera centre C.  
 
                                                                            (2) 0=RvmT

                                                                       (3) 0)( =− tuRmT

Equations (2) and (3) are deduced from equation (1), which 
shows that the determination of camera rotation R can be 
independent from the estimation of camera position t and model 
parameters. Note v becomes a known vector in the object-
centered coordinate system which is parallel to the Y axis, 
while u can be represented by the model parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Projection of an edge in a rectilinear building model 

onto a camera’s image plane and spatial relationship of 
buildings 
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The normal vector m can be defined by the intersection of the 
projection plane C67 with the image plane as shown in Figure 1 
and represented in the equation (4),   

                                                       (4) 0=−+ fmymxm zyx

where mx, my, mz are the coordinates of the normal vector in the 
camera coordinate system and f is the focal length of the camera; 
x and y are points on the image edge. Given an observed image 

of edge 67, the observed normal vector  can be obtained by 

the equation (5),  

'm

                                      (5) ( ) ( TT fyxfyxm −×−= ,,,, 2211
' )

The location and orientation of the building 2 can be 
represented by a building vertex (e.g. vertex 3 (X3, Y3) in the 
Figure 1), a building orientation along the X axis (e.g. theα  in 
Figure 1), and the building’s dimension of length, width, 
and height (e.g. L, W, H in Figure 1). Those unknown 
parameters are solved in the metric reconstruction stage.  
 
2.2 Recovery Algorithm 

The recovery algorithm takes as input, a set of correspondences 
between edges in the models and edges in the image. The 
correspondences are performed manually. The algorithm then 
automatically recovers camera pose and model dimensions, 
consisting of self-calibration and metric reconstruction. In the 
first step, the focal length is firstly obtained from image EXIF 
tags. The camera pose and the model parameters are recovered 
with respect to an object-centred coordinate system. In the 
second step, the spatial relationship of buildings is represented 
by three intrinsic parameters (building length, width, and height) 
and three extrinsic parameters (a building vertex location and 
building orientation). Those parameters can be determined by 
using model-to-image correspondence and the recovered 
camera pose.  
 
2.2.1 Self-Calibration 
The self-calibration requires more than three line 
correspondences between the pre-defined model edges and the 
image edges, which consists of initial estimate of camera 
rotation, refinement of camera rotation, and determination of 
camera translation and model dimensions. 
 
Initial Estimate of Camera Rotation 
 
The objective function of obtaining initial estimates for camera 
rotation is formulated according to the Equation (2) as shown in 
the Equation (6), 
 
                                                                   (6) ∑=

n

i
i

T
i RvmO 2

1 )(

 
where i is the number of the model edges, n is the total number 
of the employed model edges, mi and vi are the corresponding 
normal vector and direction of the model edge,  R is 3x3 camera 
rotation matrix. By summing up the extents to which the 
rotation R violates the constraints arising from Equation (2), the 
objective function can be minimized to obtain initial values for 
the camera rotation 
 
Refinement of Camera Rotation 
Once initial camera rotation is obtained, a non-linear technique 
based on Gauss-Newton method is applied to the minimization 

problem. The direct calculation of Jacobian matrix of the 
objective function O1 is complex. To simplify the linearization 
of O1, we rewrite the rotation matrix R as a multiplication of 
three sequential rotations, and compute the first derivative for 
each rotation angle. The Jacobian matrix of O1 can then be 
formed as, 
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Given the three initial camera rotations obtained from the 
previous step, the Gauss-Newton algorithm computes accurate 
estimates of the camera rotations within 2-3 iterations. 
 
Determination of Camera Translation and Model 
Dimensions 
 
The objective function for determining camera translation and 
model dimensions is formulated according to Equation (3) as 
shown in Equation (7), 
 
                                                            (7) ∑ −=

n

i
i

T
i tuRmO 2

2 ))((

 
where i is the number of the model edges, n is the total number 
of the employed model edges, mi, and ui are the corresponding 
normal vector and point on the model edge. In the case of 
rectilinear buildings, the minimization of the objective function 
O2 is a constrained quadratic form minimization problem, and 
can be solved through a set of linear equations. It is also 
important to keep in mind that the resulting dimensions of the 
scene and camera translations are up to a scale factor.  
 
2.2.2 Metric Reconstruction 
The metric-reconstruction also requires more than three line 
correspondences between the pre-defined model edges and the 
image edges, which consists of initial estimate of building 
orientation, refinement of building orientation, and 
determination of building dimensions and location.   
 
Initial Estimate of Building Orientation 
 
The three directions of model edges, v1 (e.g. model edge 67 of 
the building 2 in Figure 1), v2 (e.g. model edge 78), and v3 (e.g. 
model edge 27), can be represented as shown in Equation (8). 
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Since the value of building dimensions (W, H) does not affect 
the building orientation, the only unknown parameter of 
building orientation isα . At this stage, the camera orientation 
is known. The objective function of Equation (6) is employed to 
obtain an initial estimate for α . The minimization of the 
objective function (6) sums the extents to which the model 
orientation v violates the constraints arising from Equation (2). 
 
Refinement of Building Orientation  
 
Once initial building orientation is obtained, a non-linear 
technique based on the Gauss-Newton method is applied to the 
minimization problem. Based on Equation (9), the minimization 
is straightforward since there is only one unknown 
parameterα , 

 
0cossin 21 =+− αα WaWa T

i
T
i

                                                 (9) 
 
where  Rma T

i
T
i =

 
Given the initial building orientation obtained from the previous 
step, the Gauss-Newton algorithm computes the accurate 
building orientation within 2-3 iterations. 
 
Determination of Building Dimensions and Location 
 
The building dimensions and location is determined by 
minimizing objective function O2 as shown in Equation (7). In 
this stage, image norm vectors m, camera rotation R and 
translation t are known. The unknowns are points ui on the 
model edges which are expressed as linear functions of building 
dimension and location, and can be solved through a set of 
linear equations. The same way can be employed to reconstruct 
more buildings. 
 
2.3 Vanishing Points Based Algorithm 

The method (Zhang et al., 2001) proposed an adjustment model 
for computing vanishing points, and then determined camera 
focal length as well as camera orientation using calculated 
vanishing points. Given a dimension of the cubic building, the 
camera translation and other two dimensions of the building 
were determined. We also extended this approach to deal with 
multiple buildings using the topological representation as 
shown in Figure 1. Then we evaluated effectiveness of our 
method with this extended vanishing points based method. Due 
to the space limit, we do not include the details of their methods 
in this paper. 
 
 

3. EXPERIMENTAL RESULTS 

This section describes a series of experiments that were carried 
out in order to evaluate the effectiveness of proposed algorithm 
and the vanishing points based algorithm. Simulation is first 
used to systematically vary key parameters such as the camera 
parameters and measurement of the image segments; thereby 
enabling us to characterize the degradation of the algorithms in 
extreme situations. Real examples are shown to gauge practical 
results. 
 
3.1 Simulation Experiments 

The synthetic image data was generated with a virtual camera 
and two 3D cubic building models as shown in Figure 1. The 

camera parameters are listed in the Table 1, assuming that the 
image centre lies at the centre of the image frame. Table 2 
shows information about the two building dimensions, locations, 
and orientations. 
 
 

Focal Length 
(m) 

0.0798 Pixel Size (um) 12 

X0(m) -500.672 ω ( ) 50.346

Y0(m) 100.317 ψ ( ) 3.582 

Z0(m) 650.783 κ ( ) 2.787 

             
Table 1. Camera intrinsic and extrinsic parameters 

 
 

 Building 1 Building 2 

Length (m) 40 26.41 

Width (m) 20 20.92 

Height (m) 30 22.31 

Orientation along X axis ( ) 0 α = 30.856 

X3 100.512 Location of a building model  vertex (m) 

 Y3 -200.217

 
Table 2. Building parameters of dimensions, locations and 

orientations 
 

We evaluated how errors in measurements of image segments 
as well as camera parameters influence accuracy of the 
recovered camera pose and building model dimensions for both 
methods.  In the following tables, entries in rows with “V” 
correspond to experiments from the vanishing points based 
method, with “M” correspond to experiments from our model 
based method. Entries in column with “0” correspond to 
experiments with correct image measurements or camera 
parameters.    
 
Errors from image noise 
 
A uniformly distributed random image error is added to the 
endpoints of the image segments. Entries in columns with 0 
random errors correspond to the experiments with the image 
segments without errors. Table 3 shows that the reconstruction 
errors increase as the random image errors are increased for 
both methods. However, the vanishing points based method is 
extremely unstable to those random errors in the endpoints of 
the image segments. The results from vanishing points based 
method shows a very bad reconstruction. The reason is small 
errors in endpoints of the image segments cause huge errors in 
the determination of vanishing points. Thereby, large errors in 
vanishing points cause huge errors in the resulted camera pose 
and buildings. While the model based approach is relatively 
stable to those random errors. The errors in the endpoints have 
much less effect on the accuracy of the reconstruction 
compared with vanishing points based method.  
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Table 3. Comparison of the vanishing points based method with 

the model based method using the same noises in endpoints 
 
Errors from image centre offsets  
 
The influence of the incorrect image centre on both methods 
was analyzed introducing an error of 5, 10, 15 pixels on x and y 
coordinates of the image centre. In Table 4, entries in column 
with 0 pixel offsets correspond to the experiments with correct 
image centre. The experimental results show that both methods 
are insensitive to errors in the image centre offsets, which 
validate the feasibility of the approximation that the principle 
points lay at the image centre. However, without considering 
the noise in the endpoints of image segments, the accuracy of 
the vanishing points based method is slightly better than model 
based one with the same amount of image centre errors. This 
can be partially explained by the fact that the rotation and 
translation constraints are weak constraints when used 
separately. Small errors in the rotation are amplified into large 
errors in the translation, and subsequently affect the resulted 
building parameters.   
 
3.2 Real Data Experiments 

We take pictures using a Canon PowerShot SD750 digital 
camera. Figure 2a (3072X2304 pixels) is two boxes, and Figure 
2b (3072X2304 pixels) is the Burnside Hall at the downtown 
campus of McGill University, Montreal. The measured image 
edge features are those black lines digitized using mouse. Table 
5 shows that accuracy of 3D reconstruction from Figure2a using 
the model-based method is much higher than those from the 

vanishing points based methods, especially in the dimension of 
the height. 
 
 

 
Table 4. Comparison of the vanishing points based method with 

the model based method using the same image centre errors 
 
 

          
                       (a)                                                  (b) 
 
Figure 2. (a) Two boxes with digitized edges superimposed (b) 

Burnside Hall with digitized edges superimposed 
 

The building in Figure2b is an irregular cube but we use a 
rectilinear building model to approximate it, which induces 
measurement errors, especially in the corners of the building. 
Besides, the occlusions caused by snow make the accurate 
measurement of the building top and bottom difficult. Under all 
of this noise, however, we still achieve reasonable results using 
model based approach. The computed dimensions of Burnside 
Hall are 35.44, 34.92, and 53.33 meters respectively, as 
compared to the model dimensions obtained from DWG file of 
35.44, 32.42, 50.00 meters. While the vanishing points based 

 Noises in endpoints of image segments (pixel)
Camera Pose 0 5 10 15 

V 50.346   48.183 40.773 30.269 ω ( ) 
M 50.346 50.185 50.675 49.630 
V 3.582 4.327 8.317 13.104 ψ ( ) 
M 3.582 3.858 4.303 1.336 
V 2.787 0.782 24.080 32.333 κ ( ) 
M 2.787 2.281 2.074 6.885 
V -500.672 -485.999 -557.189 -580.263X0(m) 
M -500.672 -508.195 -488.357 -527.336
V 100.317 135.713 -14.467 -121.659Y0(m) 
M 100.317 97.641 95.361 92.791 
V 650.783 643.552 453.882 451.424Z0(m) 
M 650.783 673.415 658.684 601.905

Building 1     
V 20.000 22.023 16.302 14.941 W(m) 
M 20.000 20.672 20.147 18.995 
V 30.000 31.710 21.055 21.847 H(m) 
M 30.000 30.829 32.836 28.907 

Building 2     
V 30.856 47.744 68.578 66.743 α ( ) 
M 30.856 31.214 31.011 29.335 
V 100.512 293.388 496.548 182.584X3(m) 
M 100.512 101.313 98.044 100.513
V -200.217 -297.293 -128.671 -111.903Y3(m) 
M -200.217 -201.372 -195.254 -191.698
V 26.413 33.982 54.871 29.901 L(m) 
M 26.413 26.433 25.961 25.260 
V 20.927 46.757 64.184 21.700 W(m) 
M 20.927 21.059 20.650 20.089 
V 22.315 24.475 27.667 15.535 H(m) 
M 22.315 22.4.7 21.821 20.245 

 Errors in the image centre (pixel) 
Camera Pose 0 5 10 15 

V 50.346 50.324 50.302 50.280 ω ( )
M 50.346 50.296 50.247 50.198 
V 3.582 3.582 3.582 3.582 ψ ( )
M 3.582 3.538 3.495 3.452 
V 2.787 2.790 2.793 2.795 κ ( )
M 2.787 2.865 2.942 3.018 
V -500.672 -500.934 -501.197 -501.459X0(m)
M -500.672 -501.341 -502.002 -502.654
V 100.317 100.392 100.468 100.543Y0(m)
M 100.317 100.404 100.490 100.574
V 650.783 650.579 650.376 650.172Z0(m)
M 650.783 649.026 647.276 645.532

Building 1     
V 20.000 20.009 20.018 20.027 W(m)
M 20.000 19.989 19.978 19.967 
V 30.000 29.973 29.945 29.918 H(m)
M 30.000 29.879 29.759 29.640 

Building 2     
V 30.856 30.821 30.786 30.751 α ( )
M 30.856 30.819 30.782 30.745 
V 100.512 100.403 100.294 100.185X3(m)
M 100.512 100.529 100.546 100.564
V -200.217 -200.298 -200.379 -200.461Y3(m)
M -200.217 -200.156 -200.096 -200.035
V 26.413 26.422 26.431 26.441 L(m) 
M 26.413 26.419 26.424 26.430 
V 20.927 20.928 20.929 20.930 W(m)
M 20.927 20.921 20.916 20.910 
V 22.315 22.296 22.278 22.258 H(m)
M 22.315 22.242 22.171 22.099 
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method does not work properly in this situation. Figure 3 shows 
the recovered camera pose and wire frame of the Burnside Hall 
using MatLab.   
 
 

 
Table 5. Comparison of the vanishing points based method with 

the model based method using real image Fig2.a 
 
 

 
 
Figure 3. Visualization of the recovered camera pose and wire 

frame of the Burnside Hall 
 
 

4. CONCLUSIONS 

This paper presented a method to recover 3D rectilinear 
building models from single monocular images. The method 
uses the correspondences between predefined 3D models and 
their corresponding 2D images to obtain camera pose as well as 
parameters of 3D building models. The camera orientation is 
first recovered followed by solving translation and the first 
building model dimensions. The direct computation of the 
initial estimate for camera rotation effectively solved problems 
in the previous approaches (e.g., Taylor and Kriegman, 1995), 
and the determination of camera pose as well as the first 
building model dimensions are much simpler than the previous 
methods (e.g., Debevec et al., 1996). Under the assumption of 
flat terrain, more 3D building models can be reconstructed 
based on recovered camera pose through model-to-image 
correspondence.   
 
Simulation experiments were carried out in order to investigate 
how the accuracy of the algorithm would be affected as 
different parameters were varied. The comparison using 
identical synthetic and real data shows that our method is 
significantly superior over the vanishing points based method. 
The experiments also show that our method robustly and 

accurately estimates camera pose and building dimensions 
provided that accurate image measurements are available.  
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